Practice What You Preach
Reproducible Research at the Front Lines of Science

Kai Blin
Novo Nordisk Foundation Center for Biosustainability

Tools for Reproducability in Bioinformatics
2016-04-21
Hej

Who is that guy?

- Scientific Software Engineering
- Microbiology
- antiSMASH
- CRISPy

More info:

- phdops.kblin.org
- github.com/kblin
- @kaiblin
- orcid.org/0000-0003-3764-6051
Overview

- Reproducible Research
- Reproducible Research in Practice
 - Problems
Overview

- Reproducible Research
- Reproducible Research in Practice
 - Challenges
Overview

- Reproducible Research
- Reproducible Research in Practice
 - Challenges
- What does actually work (for me)
There is no such thing as "reproducible science", there is just "science" and "not science".
– Someone on Twitter

Reproducible Research
Reproducibility

Ideally:

- Lab notebook available
- Data on Figshare
- Code on GitHub/Bitbucket (and Figshare)
- Preprint on a preprint server
Reproducibility

- Reviewers check and reproduce results
- Fame and glory (and grants)
In theory, there is no difference between theory and practice. But, in practice, there is.
– Jan L. A. van de Snepscheut

Reproducible Research in Practice
Challenges

Reproducibility isn't free

- Making sure your research is 100% reproducible is a lot of work.
- This takes time and effort. (see Reproducibility isn't free by FitzJohn et al.)
- Even if you are convinced, is your PI / supervisor? Their boss?
Challenges

Reproducibility isn't compelling

Nice post by Greg Wilson in the context of Software Carpentry.

- ~ 5 mio articles published between 1990-2000
- Of these ~ 100 retracted for "computational irreproducibility"
- Chances that your paper is retracted: 1 : 5 000 000
- Assuming ~ 8 months to write paper and 48 hour work week, can spend 115 seconds on reproducibility
Challenges

Chicken and egg

- Reviewers don't ask for it
- Researchers don't provide it
- Catching this at publication stage is too late
Challenges

It's not a reflex yet

Ah, the good old "Where did I put this single use script I wrote months ago? I need it again." game. #bioinformatics
But...

Some points raised by C. Titus Brown

- start small
 - provide raw data
 - provide code
 - provide what version of what tool you called with what parameters
- any reproducibility is better than no reproducibility
Reproducible Research != Open Science

Disclaimer: I like Open Science

- Can work reproducibly even in closed science
- Maybe easier to get buy-in from senior scientists for RR
- Many selfish reasons to do RR
It works for me.
– Christopher Walken

What works (for me)
What Works (for me)

- Reduce special cases
- Document remaining special cases
- less surprises == better work
- learn from past mistakes
Directory Layout

As regular as possible, at least per project type.

2016-04-21_e.xamplis_de_novo/
|-- fastqc/
 |-- post/
 \-- pre/
|-- output/
|-- reads/
|-- scripts/
|-- trimmed/
|-- Makefile
\-- README.md
Directory Layout

Use a script to create project layout

#!/bin/bash

mkdir -p reads fastqc/{pre,post} output scripts trimmed
touch README.md Makefile
git init

cat >> .gitignore <<EOF
reads/*gz
fastqc/*
*.swp
EOF

git add .gitignore
git commit -m "Initial commit"
Lab Notebook

- README.md file per project
 - Have an explanation what the project is about for future self
 - Then add whatever you're doing to it as it happens
- copy & paste README.md into ELN
- Keep in git
git

all the things! (almost)

- Whenever possible, keep stuff in git
- README.md, Makefile, scripts, etc.
- Commit when something is changed
- Don't commit reads / generated data
- (Maybe use git-annex for large files)
git

part deux

- Have some git repo for random stuff unrelated to projects
 - Avoid "where did I put this script?"
- Make small commits of logical units of change
- Write good commit messages
git

commit messages

I suggest the following format:

Short summary line < 60 characters

A longer explanation of what the change is about.
This is what you'll read to figure out what this change is about.
Make this count, your future self will thank you.
Don't Run Commands Manually

- Every project has a `scripts` directory or `Makefile`.
- Data manipulation is driven from there
- Also applies to (most) other things I do
 - If more elaborated than `ls`, put it in a script
 - Not perfect yet, but getting there
Software Management

- Package software
- Use fpm & aptly / createrepo
- Install locally or put into Docker containers
Docker

- Great to deal with software with many dependencies

BUT

- Clumsy for CLI tools
Docker CLI example

```bash
#!/bin/bash

readonly INPUT_FILE=$(basename $1)
readonly INPUT_DIR=$(dirname $(readlink -f $1)); shift
readonly OUTPUT_DIR=$(readlink -f $1); shift
readonly CONTAINER_SRC_DIR="/input"
readonly CONTAINER_DST_DIR="/output"

if [ ! -d ${OUTPUT_DIR} ]; then
    mkdir ${OUTPUT_DIR}
fi

docker run \
    --volume ${INPUT_DIR}:${CONTAINER_SRC_DIR}:ro \
    --volume ${OUTPUT_DIR}:${CONTAINER_DST_DIR}:rw \
    --detach=false --rm --user=$(id -u):$(id -g) \
    antismash/standalone ${INPUT_FILE} $@
```
Workflow Management Systems

- Good idea for repetitive workflows
- Check what your colleagues are using
- Maybe use Common Workflow Language (CWL)
Workflow Management Systems

- Keep track of inputs and parameters
- Easily run a workflow 5, 10, 100 times
- Lots of overhead for one-off analyses
Further reading

- Git can facilitate greater reproducibility and increased transparency in science
- Reproducible research is still a challenge
- Some myths of reproducible computational research
Thanks for your attention.

Questions?